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A relation for the limiting activity coefficient and for the partial excess enthalpy of binary solution 
was derived from the Barker quasi-lattice theory. On the basis of these equations we found the 
relations between Ii or hT'" for some groups of related binary systems in an especially simple 
form so that is it possible to convert these quantities from one system to another without the eva
luation or knowledge of adjustable energy parameters. For some predictions it is only necessary 
to choose a geometrical model of molecules involved in them. The relations were obtained for 
binary systems whose one component is formed by monotonous molecules varying in size (such 
as n-alkanes) and the other component is arbitrary. A very simple relation also holds for limiting 
activity coefficients of substances forming homologous series in two arbitrary solvents . The 
practical utility and accuracy of the relations obtained is demonstrated on a number of examples. 
The agreement with experimental data is excellent for absolute majority of the systems tested. 

The values of excess thermodynamic functions at infinite dilution represent to 
a considerable extent limited but still very valuable information on the behaviour of 
binary systems of non-electrolytes. In many cases they can be obtained relatively 
easily by a rapid experimental technique. From the practical point of view these 
quantities represent condensed data on the extent of non-ideality of a system which 
are suitable for constructing the correlations of system properties with the structure 
of components involved. For limiting activity coefficients, in this respect, e.g. the 
Pierroti, Deal and Derr correlation 1, the correlation based on the solubility parameter 
concept2

-
4 or on the group contribution conceptS as the ASOG (ref. 6

) and UNIFAC 
(reC) methods are known. The limiting values of thermodynamic functions are also 
suitable testing properties for proposed theoretical models of solutions. In this work 
we deal with some relations between limiting activity coefficients or relations between 
limiting partial excess enthalpies, respectively, resulting from the Barker quasi-lattice 
theory, we test them and discuss their practical applicability. 
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1842 Dohnal, Holub, Pick: 

THEORETICAL 

If we use in the Barker quasi-lattice theory for the description of combinatorial 
effects the Guggenheim relation for ather mal combinatorial factor g*, the relation 
for the activity coefficient YA of a component A in a binary system with mole fraction 
XA can be written down in the form 36 

where r A, ra are the numbers of segments of molecules A, B, each of them occupying 
one site on a lattice with coordination number z. The number of surface contact 
points of the type i is denoted by Qi and the quantities Xi and X~l, characterizing the 
numbers of binary contacts of the surface point of the type i, are simultaneous solu
tion of the system of quasi-chemical equations and balance relations (see Eq. (9) in 
referenceS). The expression for activity coefficient at infinite dilution is obtained by 
limiting Eq. (1) for X A --+ o. If we realize that 

(2) 

for the limiting activity coefficient follows 

In Y~ = L Q. In Qd2 + r (z/2 - 1) In (r /r ) 
i eA I X~l L '1ijXfl A B ~, ' 

(3) 

JEB 

where '1ij are the Boltzmann factors corresponding to the interaction between the 
i-th and j-th surface point. The expression for In Y~ is obtained by replacing sub
scripts A by B in Eq. (3). 

From the relation for heat of mixing (Eq. (3) in ref. 8) it is possible to derive the 
relation for partial excess enthalpy at infinite dilution: 

" ,,(ax i)'" B1 ] + L. L. -a Xl '1llhiJ , 
ieA leB X A 

(4) 
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where the symbol (8XJ8xA)OO denotes lim aXJ8xA at XA -> O. By replacing subscripts 
A by B we obtain the relation for n~oo . 

Let us observe concerete cases now. 1) Let the solute be an arbitrary component A, 
the solvent B is formed by n-alkanes of different length. Assuming that the molecules 
of n-alkanes have monotonous surface, uniform from the point of view of interactions 
with its environment and non-changing its properties by elongating the chain (t/u 
does not change when exchanging n-alkane), it is possible to write In y't, in the [orro 

In y't, = kA - (I QJ2) In Qu + rA(zj2 - 1) In ru , (5) 
ieA 

where kA is dependent only on the solute and not on the length of n-alkane. 
For n~oo we obtain in this case from Eq. (4) (the second term corresponding to 

the interactions between different surface areas of the molecule B disappears with 
respect to its monotonicity) 

n~OO = I Qihij - 2 L L X~lX~l'1ikhik' (6) 
ieA ieA keA 
jeU i>k 

As the relation (6) does not comprise neither directly nor indirectly a characteristicS 
of the dimension of the molecule of solvent B the limiting partial excess enthalpy 
should have the identical value for the given arbitrary solute in all n-alkanes. 

2) Let the solute B be n-alkanes of different length, the solute A being arbitrary. 
On the assumption of monotonicity of the alkane molecules (likewise at the poin t 1) 
we can write for limiting activity coefficient of n-alkanes in accordance with Eq. (3) 

(7) 

This relation makes it possible to calculate yOO for any other n-alkane in some solvent 
from the knowledge of yOO of one n-alkane in the same solvent. 

Further it is possible to show easily that for alI i E A, B, (8X;j8xB) are linearly 
dependent on the number of surface contact points of n-alkane Qu. Hence it follows, 
too, the linear dependence on Qu for limiting partial excess enthalpy of n-alkane 

(8) 

where 1'.1. is independent of the n-alkane length. 

3) Let us assume limiting activity coefficients of members of some homologous 
series (e.g. n-alcohols, l-alkenes, and the like), y't,(B)' y't,(C) in binary solutions of two 
arbitrary solvents Band C. If we denote the number of surface contact points of the 
n-alkyl type in solute by Q1, the relation holds according to Eq. (3) for the values 
of these limiting activity coefficients 
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+ {I Qi In [( I t7 ijXf1 )/( I t7ijX~1)] + 
i'l'1 jeC keB 
ieA 

+ (I Q;/2 - 1) In (rB/rc)} = (X'Q1 + /3' , 
i*1 
ieA 

where (x', /3' are independent of Q1' 

Dohnal, Holub, Pick: 

(9) 

In accordance with the conclusions of our foregoing paper it is possible to reach 
results analogous to those given at the points 1,2 and 3 also on the basis of the gene
rally formulated concept of group contributions. 

RESULTS AND DISCUSSION 

The relations derived have been tested by using experimental data available in the 
literature. The used experimental data on limiting activity coefficients were altogether 
measured by the gas chromatography methods; the limiting partial excess enthalpies 
were measured calorimetrically or derived from chromatographic measurements. 
For the case when the solvents are n-alkanes we have used the geometric model ac
cepted in our previous works. In the case when n-alkanes form solutes at infinite 
dilution we have found, on the basis of preliminary calculations, as a rule, a qualitative 
agreement with the trend of experimental data. The quantitative agreement has been, 
however, relatively worse - the deviations have often amounted to 25 per cent of 
1":> or even more. The improvement has not been possible to reach, g!!nerally by 
changing the coordination number nor by changing the chosen size of solvent mole
cule. The quantitative agreement with experimental data can be, however, easily 
attained by changing r m. i.e. by a change of the number of segments which are taken 
by medium group of molecule. We have chosen rm according to the character of 
system from 1 to 1/5. For the systems where the solvent molecule is relatively con
siderably smaller than the n-alkane dissolved, r m ~ 1 - 1/2'; if the dimension of the 
solvent molecule and the dissolved n-alkanes is roughly the same r m ~ 1/3 and in 
the case that the solvent has considerably larger molecules it is possible to choose 
r m ~ 1/4 - 1/5. This empirical choice of r m is physically unreal and introduces 
a certain inconsistency into the model used. On the other hand, however, it enables, 
on retaining the original formalism (7), a comparatively accurate extrapolation and 
interpolation of limiting activity coefficients of n-alkanes in different solvents. The 
most probable reason why it is not possible to attain so good results at consistent 
choice of the geometric properties of molecules involved, is a wrong description of 
the combinatorial contribution to the activity coefficient. In this respect it might be 
possible to try other relations for g* presented in the literature32 ,33 . However, the 
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TABLE I 

Comparison of Relation (5) with Experimental Values of In "IA 

Solute 
Solvent Ref. InrA kA om .. a 'Jb 

'A t, OC 

1-Chlorobutane n-C24 -0'134 13-824 
3·5 76 n-C30 -0'274 13-835 0·011 0·007 

n-C 36 -0'414 13-829 

l-Chloropentane n-C24 -0'101 15'280 
4 76 n-C30 -0'248 15 '278 0 '022 0'015 

n-C36 -0,355 15'300 

l-Chlorohexane n-C24 -0,071 16·734 
4'5 76 n-C30 -0,224 16·719 0·027 0 '018 

n-C3 6 -0'322 16'746 

l-Chloroheptane n-C2 4 -0,051 18'178 
5 76 n-C30 -0·189 18'172 0'006 0·004 

n-C3 6 -0,301 18'178 

1,I-Dichloroethane n-C24 9 -0'051 13-906 
3'5 76 n-C30 9 -0'203 13-906 0·017 0·011 

n-C3 6 -0'354 13-889 

1,2-Dichloroethane n-C24 0'193 12·726 
3 76 n-C30 0·040 12·732 0'021 0·014 

n-C36 -0' 113 12·711 

I-Bromopropane n-C24 -0'185 12'348 
3 76 n-C30 -0'341 12'351 0 '010 0·007 

n-C36 -0'489 12'341 

1,3-Dibromopropane n-C24 0·794 14·751 
3'5 76 n-C30 0·617 14'726 0·050 0·033 

n-C3 6 0'458 14'701 

Ethanol n-C, 11 3'16 13-614 
2'5 50 n-C1O 11 3'01 13'600 0·036 0·020 

n-C18 10 2'68 13'593 
n-C2 4 10 2'52 13-629 

n-Propanol n-C18 10 2'53 14'878 0·015 0·015 
3 50 n-C24 10 2'36 14·893 

Methyl acetate n-C18 10 0'99 14'773 0·036 0·036 
3·5 50 n-C24 10 0'78 14'737 

Methyl formate n-C18 10 1-18 13-528 0·025 0'025 
3 50 n-C24 10 0'97 13'503 

Acetone n-C18 10 1·46 13-808 0·025 0'025 
3 50 n-C24 10 1'25 13'783 
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TABLE ( 

(Continued) 

Solute 
Solvent Ref. In y~ kA elm •• 

a Jb 
'A t, OC 

Propanal n-C I S 10 0 '98 13'328 0·005 0·005 
3 50 n-C24 10 0·80 13·333 

n-Hexane n-C22 12 -0' 152 15·177 
4 100 n-C24 12 -0'222 15'159 

n-C2S 12 -0'307 15'173 
n-C30 12 -0,340 15' 187 0·048 0·022 
n-C32 12 -0'373 15·198 
n-C34 12 -0'408 15'206 
n-C36 12 -0,448 15·207 

n-Heptane n-C22 12 -0' 113 16'643 
4'5 100 n-C24 12 -0'185 16'620 

n-C2S 12 -0'264 16'635 
n-C30 12 -0,297 16·646 0'050 0'022 
n-C32 12 -0,327 16'659 
n-C34 12 -0,362 16'655 
n-C3 6 12 -0,397 16·670 

n-Octane n-C22 12 -0·076 18' 107 
5 100 n-C24 12 -0,158 18·072 

n-C2S 12 -0'228 18·090 
n-C30 12 -0,259 18'102 0'052 0·023 
n-C32 12 -0'284 18'118 
n-C34 12 -0'317 18' 124 
n-C36 12 -0'355 18'124 

n-Decane n-C24 13 -0'128 20·949 
80 n-C30 13 -0'222 20·973 0·032 0'019 

n-C32 13 -0,247 20·985 
n-C36 13 -0,323 20·981 

a Maximum absolute deviation in In YA, b average absolute deviation in In YA' 

mentioned error of the combinatorial contribution need not be too weighty at finite 
concentrations. (Let us mention in addition to it that in our foregoing paper, in which 
we dealt with the prediction of GE

, the choice r m = 1/2 should comply relatively 
well according to the above-mentioned rules for all the systems investigated.) 

The results of testing the relations (5) and (7) are given in Tables I and II partly in 
the form of constants kA and kB calculated from single limiting activity coefficients, 
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TABLE II 

Comparison of Relation (7) with Experimental Values of In Ya 
Solvent 

b Solute Ref. In Ya -kn dJ1l8X 
r AQ r, oC 

Phenol n-Cs 14 2'54 0·7405 
11 /4 25 n-C6 14 2·72 0·7414 0·03 

n-C? 14 2'93 0·7397 

Benzonitrile n-Cs 14 1·69 0·8427 
12/4 25 n-C6 14 1·82 0·8430 0·01 

n-C? 14 1·93 0·8441 

Diethylene glycol n-Cs 15 4'16 0'7618 
11 /3 50 n-C6 15 4'52 0 '7651 

n-C? 15 4·92 0'7649 0·01 
n-Cs 15 5·34 0'7633 
n-C9 15 5·71 0·7641 
n-C1o 15 6'10 0 '7636 

2-Pentanone n-Cs 16 1'66 1'0459 
9/2 20 n-C6 16 1·88 1·0465 0·04 

n-C? 16 2·14 1'0443 

n-Butanol n-Cs 14 1-40 0·8729 0'01 
9/3 25 n-C? 14 1·64 0·8736 

Dimethyl sulphoxide n-Cs 14 4·12 0·6285 
8/3 25 n-C6 14 4'43 0·6324 0·01 

n-C? 14 4·80 0·6322 

Squalane n-C4 17 -0'548 1'4032 
38/5 20 n-Cs 17 -0'483 1'4010 0·02 

n-C6 17 -0'454 1-4016 
n-C? 17 -0'399 1'3998 

Acetonitrile n-Cs 2·74 0·8422 
3/ 1 24 n-C6 2·97 0'8483 

n-C16 5·92 0·8469 0'14 
n-C22 7·44 0·8466 
n-C32 10·87 0·8382 

Diethyl phthalate n-Cs 15 1-37 1'1238 
22/4 50 n-C6 15 1'50 1' 1256 

n-C? 15 1'65 1·1254 0·04 
n-Cs 15 1'79 1'1256 
n-C9 15 1·92 1' 1260 
n-C1O 15 2·07 1' 1252 

Triethylene glycol n-C6 19 4·47 0'7770 
16/4 29,5 n-C? 19 4-78 0'7788 0·01 

n-es 19 5' 14 0-7769 
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TABLE II 

(Continued) 

Solvent 
b Solute Ref. InYa -kB 15m"" 

rAg l,oC 

n-C24 n-CS 13 -0'273 1'3120 
32/5 60 n-C6 13 -0'242 1-3126 

n-C? 13 -0'201 1'3120 0·01 
n-Cs 13 -0' 177 1'3124 
n-CIO 13 -0·128 1·3125 

n-C20 n-Cs 13 -0'188 1·2492 
28/5 40 n-C6 13 -0'161 1'2498 0·01 

n-C? 13 -0·134 1·2500 

n-C36 n-Cs 13 -0'501 1'4640 
44/5 80 n-C6 13 -0-459 1'4641 

n-C? 13 -0'423 1'4644 0'01 
n-Cs 13 -0'383 1'4641 
n-C IO 13 -0'323 1'4642 

Methanol n-C3 20 2'456 0'5871 0·02 
6/3 25 n-C4 20 2'695 0'5890 

Ethanol n-C3 20 1·850 0 '7041 0'06 
7/3 25 n-C4 20 2'003 0·7086 

Isopropanol n-C3 20 }'484 0·7966 0·04 
11/4 25 n-C4 20 }'592 0·8029 

a Denominator of the fraction corresponds to the choice of r m' b maximum absolute deviation 
in In YD'. 

partly as the maximum or average deviations of the prediction of one data In yOO 

from the other. In most cases the average deviation of the prediction does not exceed 
2 per cent of yoo. In connection with gas chromatography, the use of relation (5) 
appears as especially promising for practical prediction of vapour-liquid equilibrium. 
From the value of yOO of arbitrary volatile substance in a non-volatile longer n-alkane, 
which is easily available by the current technique of gas chromatography (n-alkane 
forms the stationary phase), it is possible to calculate according to Eq. (5) the limiting 
activity coefficient of the same substance in a volatile shorter n-alkane which is for 
a change mostly more interesting from the practical point of view. In connection with 
some of one-parameter equations for GE (ref. 34 •

35
) this procedure would represent 

a simple, rapid, effective method for predicting VLE' of binary systems with n-alkanes 
which needs a minimum of experimental data. 
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To carry out the test of relations (6), (8) and (9) it is not necessary to specify the 
geometric model of the lattice and molecules involved. The independence of the li
miting partial excess enthalpy of solute of the special type BmCn of the length of 
n-alkane B) as a solvent had been already derived by Sheller and coworkers lO starting 
from the group contribution concept. For several solutes they had presented chroma
tographically determined Ii~"" in two n-alkane solvents C1sH 38 and C24Hso which 
are within the range of experimental errors the same. S:lVini and coworkers21 had 
found from calorimetric determination of heats of mixing the constant value of 
Ii!"" for n-octanol in n-alkanes equal 21 ·8 kJ/mol and for ethanol in n-alkanes, 
23·5 kJ/mo!. Woycicka and Recko22 had ascertained, by measuring heats of mixing 
of diluted solutions of n-propanol and n-hexanol in n-alkanes, the values of Ii!"" 
24·2 kJ/mol and 23·4 kJ/mol, resp., Woycicka and Kalinovska23 had found out 
even a constant value of c;"" for n-decanol in n-alkanes. Further proofs can be pro
vided e.g. for benzene24, esters2S etc., by experimental data in the literature. 

TABLE III 

Illustration of Linear Dependence of In (YA(B) i YAIC) on the n-Alkyl ehain Length of Molecule A 

Solute In (YA(B)/rA(C» .d b 
1 

n-butane 3·26 0'19 
n-pentane 3'47 0·20 
n-hexane 3·67 0·21 
n-heptane 3-86 

n-pentane 1·52 0 '24 
n-hexane 1·76 0 '22 
n-heptane 1·98 0 '22 
n-octane 2·20 

I-pentene NO 0'28 
I-hexene 2'68 0'28 
I-heptene 2'96 0·29 
I-octene 3'25 

n-pentane 2'74 0·19 
n-hexane 2'93 0 '23 

4 n-heptane 3'16 0·25 
n-octane 3·41 0'24 
n-nonane 3'65 0 '25 
n-decane 3-90 

"Set I: B = ani line, e = ·squalane, 20oe, ref. 30, set 2: B = aniline, e = I-methylnaphthalene, 
20o e , ref.30 , set 3: B = diethylene glycol , e = diethyl phthalate, 75°e , ref. 31

, set 4: B = diethy
lene glycol, c: = diethyl phthalate, 75°e , ref. 31; b first (relative) differences. 
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The linear dependence of Ji~ co on the number of surface contact points of n-alkanes, 
i.e. in fact on the number of carbon atoms of the alkane chain nc is demonstrated 
in Fig. 1 on experimental data of various systems. 

As a test of relation (9) we present Fig. 2 and Table III. With respect to the defi
ciency of data of needed type we have been forced to choose as a general homologous 
series mostly n-alkanes or l-alkenes and only exceptionally n-aIcohols or l-chloro
alkanes. In all the cases investigated, the dependence of In (Y;:(B)/y't(C») on the number 
of carbons of the n-alkane chain is linear with considerable accuracy. 

FIO.l 

Dependence of Partial Excess Enthalpy at 
Infinite Dilution Ii~CQ (kJ/mol) of n-Alkanes 
in Different Solvents on the Number of 
Carbon Atoms of n-Alkanes nc 

1 Acetone, -20°C, ref.26 , 2 methanol, 
25°C, ref. 26, 3 2-ethylhexyl phthalate, 50°C, 
ref. 27 , 4 butyl benzyl phthalate, 50°C, ref.27

, 

S dimethyl sulphoxide, 25°C, ref.26
. 

FlO. 2 

Dependence of r = In (yfIB)/yf(c» on the 
Number of Carbon Atoms n~ of n-Alkyl 
Chain 

1 An-alkanes, B eicosane, C squalane, 
53'2°C, ref. IS

, 2 A l-alkenes, B eicosane, 
C squalane, 53'2°C, ref. IS, 3 An-alkanes, 
B diethyl phthalate, C dibutyl phthalate, 
25°C, ref. 2s, 4 A l-alkenes, B diethyl phtha
late, C dibutyl phthalate, 25°C, ref.2s, 
SAn-alkanes, B sulpholane, C dimethyl 
sulphoxide, 30°C, ref. I 9 , 6, An-alkanes, 
B sulpholane, C propylene carbonate, 30°C, 
ref. I 9, 7 An-alkanes, B dimethyl sulphoxide, 
C propylene carbonate, 30°C, ref. I 9 , 8 A 
n-alkanes, B triethylene glycol, C propylene 
carbonate, 30°C, ref. I 9 , 9 An-alcohols, 
B glycerol, C oxydipropionitrile, 60°C, ref.29 

(nc values in parentheses), 10 A I-chloro
alkanes, B n-C24, C n-C30, 80°C, ref. 9 . 

10 

-----_8 
0,5 

-1 

~--~--~~--- 10 

9~5 

Coliection Czechoslov. Chern. Commun. [Vol. 441 [1979J 



Applications of the Barker Quasi-Lattice Theory 1851 

REFERENCES 

1. Pierotti G. J ., Deal C. A., Derr E. L. : Ind. Eng. Chern. 51, 95 (1959). 
2. Weimar R. F ., Prausnitz J . M.: Hydrocarbon Process . 44, 237 (1965). 
3. Helpinstill J. G., Van Winkle M.: Ind . Eng. Chern., Process Des. Develop. 7,213 (1968). 
4. Null H. R ., Palmer D. A.: Chern . Eng. Progr. 65,47 (1 969). 
5. Wilson G . M. , Deal C. H. : Ind. Eng. Chern., Fundarn . 1,20 (1962). 
6. Deal C. H ., Derr E. L. : Ind . Eng. Chern. 60, 28 (1969). 
7. Fredenslund A. , Jones R. L., Prausnitz J. M .: AIChE J . 21, 1068 (1975). 
8. Dohnal V., Holub R., Pick J.: This Journal, in press. 
9. Tewari Y. B., Scheridan J . P. , Martire D . E. : J. Phys. Chern . 74, 3263 (J 970). 

10. Scheller W. A., Petricek J . L. , Young G . c.: Ind . Eng. Chern ., Fundarn. JJ , 53 (1972). 
II. Scheller W. A.: Verfahrenstechnik 8, 73 (1974). 
12. Parcher J. F., Yun K. S.: J . Chrornatogr. 99,193 (1974). 
13. Laub R. J ., Martire D . E., Purnell J . H.: J . Chern. Soc., Faraday Trans. 1,73,1686 (1977). 
14. Vernier P. , Rairnbault c., Renon H .: J . Chirn. Phys. Physicochirn . BioI. 66, 429 (1969). 
15. Alessi P., Kikic I., Stele L. : Croat. Chern. Acta 47, I (1975). 
16. Pescar R. E., Martin J. J. : Anal. Chern. 38,1661 (1961). 
17. Desty D. H., Swanton W. T .: J . Phys. Chern . 65, 766 (1961). 
18. Martire D . E ., Pollara L. Z.: J . Chern . Eng. Data 10, 40 (1965). 
19. Gaile A. A. , Parizheva N. V., Proskuryakov V. A.: Zh . Prikl. Khirn. (Leningrad) 47, 191 

(1974). 
20. Kretschmer C. B., Wiebe R.: J. Arner. Chern. Soc. 74, 1276 (1952). 
21. Savini C. G., Winterhalter D . R ., Van Ness H. c. : J . Chern. Eng. Data 10,168 (1965). 
22. Woycicka M. K., Recko W. M.: Bull. Acad. Pol. Sci., Ser. Sci. Chirn . 20, 783 (1972). 
23. Woycicka M . K. , Kalinowska B.: Bull. Acad . Pol. Sci., Ser. Sci . Chirn. 23, 759 (1975). 
24. Diaz Pena M ., Menduina c.: J. Chern. Therrnodyn. 6, 387 (1974). 
25. Grolier J.-P. E. , Ballet D. , Vaillard A. : J . Chern . Therrnodyn. 6, 895 (1974) 
26 .. Landolt- Boernstein, Group IV, Volume 2, Heats of Mixing and Solutions. Springer Verlag, 

Berlin - Heidelberg 1976. 
27. Kikic J., Alessi P.: J. Chrornatogr. 100,202 (1974). 
28. Alessi P., Kikic J., Torriano G. : J. Chrornatogr. 105, 257 (1975). 
29. Martire D. E.: Anal. Chern. 38, 244 (1966). 
30. Desty D. H ., Swanton W. T.: J. Phys. Chern . 65, 766 (1961). 
31. Alessi P., Kikic I., Stele L.: Croat. Chern. Acta 47 (1), I (1975). 
32. Lichtenthaler R. N., Abrams D . S., Prausnitz J. M.: Can. J. Chern. 51, 3071 (1973). 
33. Donhue M . D ., Prausnitz J. M .: Can. J . Chern. 53, 1586 (1975). 
34. Tassios D. P.: AIChE J. 17, 1367 (1971) . 
35. Bruin S. , Prausnitz J. M .: Ind. Eng. Chern ., Process Des. Develop. 10, 562 (1971). 
36. Barker J.: J. Chern. Phys. 20,1526 (1952). 

Translated by 1. Linek. 

Collection Czechoslov. Chern. Commun. [Vol. 441 [19791 




